Pensando en una solución a este problema, hemos diseñado un dispositivo electrónico que se encarga de encender un bombillo, en el momento que el sol se oculta y se apaga automáticamente cuando el sol vuelve a asomar a la madrugada, igual que las lámparas de iluminación del alumbrado público.
Otra de nuestras motivaciones para hacer este circuito es dar a conocer algunos componentes como losoptoacopladores y los Triacs, enseñando su funcionamiento básico.
El bombillo puede ser hasta de 100W. Puede usar uno de más potencia, siempre y cuando cambie el Triac BT136, por uno que soporte más amperios como el BTA08600, que soporta hasta 8 amperios. No olvide usar un disipador para mantener elTriac refrigerado.
El condensador (C1) de 2.2 uF de poliéster, está en serie a la entrada del voltaje de la red pública, restringiendo el paso de corriente (amperios). Este condensador sólo permite el paso de unos 60 mA aproximadamente, facilitando la reducción de voltaje que se hará mas adelante. La resistencia de 330K (R1) que está en paralelo con el condensador (C1), se encarga de descargar el condensador a la hora de desconectar el circuito, evitando que el condensador quede cargado y pueda enviarnos una descarga eléctrica, al momento de manipular el circuito.
En el otro cable de entrada de la red pública hay una resistencia de 10 ohmios (R2) que funciona como fusible y también ayuda a limitar la corriente.
Recordemos que al rectificar una corriente se eleva su voltaje, multiplicándolo por raíz de 2 que es 1.4141. Esto quiere decir que para una alimentación de 120 voltios AC, obtendremos a la salida del puente de diodos un voltaje de 169 voltios, menos 2 voltios de consumo del puente y algunas perdidas, tendremos unos 157 voltios aproximadamente. Y para una alimentación de 220 voltios AC, tendremos un voltaje de salida de unos 305 voltios DC aprox. Por esta razón el condensador de la fuente rectificadora debe ser de 350 voltios, de lo contrario se estallará al momento de conectar el circuito.
La resistencia de 39K a 5 watts (R3) que vemos en la fotografía es la resistencia de polarización del zener. Es necesario que sea a 5W, ya que el esfuerzo que tiene que hacer para bajar la corriente, genera un calor relativamente alto. La fórmula para calcular esta resistencia es la siguiente:
RZ = Vt – Vz / Iz
Resistencia de polarización = voltaje total menos el voltaje del zener, dividido por los amperios del zener.
Tenemos que: 305VDC – 10 = 295VDC / 0.02 Amp = 14.750 ohmios. Podría ser una resistencia de 15K, pero al hacer la prueba se calentaba demasiado, por lo que optamos por buscar la resistencia más alta, antes de que se caiga el voltaje por falta de corriente. La resistencia máxima es de 47K y la mínima sin exceso de calor es de 33K.
La resistencia de 10K (R4), le ayuda al zener a soportar la carga. Va en paralelo a tierra con el diodo zener.
El condensador de 47 uF (C3) y el condensador cerámico de 0.1 uF (C4) rectifican nuevamente la corriente, quitando posibles rizos.
Cuando hicimos la prueba en el protoboard sin estos dos condensadores, notamos que titilaba levemente el bombillo, sobre todo al usar una lámpara de neón. Por esta razón los colocamos, logrando una iluminación estable y sin fluctuaciones.
Ahora viene el circuito que se encarga de la automatización de encendido al detectar oscuridad y apagado al detectar luz.
El reóstato que vemos en la fotografía (RV1) forma parte de un divisor de voltaje, junto con una fotorresistencia. Se puede colocar una resistencia fija de 10 o 15K, pero el reóstato da la posibilidad de graduar la sensibilidad del circuito.
Entrando en materia: Cuando la corriente pasa por el reóstato y llega al punto centro entre el reóstato y la fotorresistencia. Si la fotorresistencia está recibiendo luz, baja su impedancia a 0 ohmios, polarizando negativamente la base del transistor. Al momento que se oscurece el ambiente, la fotorresistencia sube su impedancia a más de 100K, restringiendo el paso de la corriente. En ese momento se polariza positivamente la base del transistor 2N3904.
Como se puede observar en la fotografía, le hemos colocado un recubrimiento en su parte inferior. Esto con el fin de que no reciba luz por debajo, ya que si esto sucede, no funcionará correctamente. Como no queríamos que quedara la resistencia pegada a la tarjeta del circuito impreso, usamos un trozo de un bolígrafo viejo y lo cubrimos con cinta aislante negra. De la buena ubicación de la fotorresistencia, depende la precisión en el funcionamiento de nuestro circuito.
Esta es una de las grandes ventajas de usar un optoacoplador, ya que sirve para aislar un circuito de otro, evitando catástrofes a la hora de un corto circuito.
Al momento que el transistor 2N2907 conduce, le envía un voltaje al LED que se encuentra dentro del MOC3021. Como el voltaje que llega al optoacoplador es de 10 voltios y un LED sólo puede ser alimentado con 3 voltios, colocamos una resistencia de 390 ohmios en serie con el pin 2 que es el pin de tierra o negativo.
Tiene tres patas: T1, T2 y G (compuerta en ingles es Gate).
Al momento que el optoacoplador es accionado por el transistor, este conduce entre sus pines 4 y 6, enviando una corriente a la compuerta del Triac. El Triac conduce la corriente de la red pública y como el bombillo está en serie, este se enciende. Al momento que no llega corriente a la compuerta del Triac, este deja de conducir y el bombillo se apaga.
Si queremos direccionar la fotorresistencia a un punto de luz especifico, podemos entubarla, tal como se aprecia en la foto. Esto se usa para alarmas o por ejemplo para subir la puerta del garaje al encender las luces. En fin; Dejamos a la imaginación de cada uno una infinidad de posibilidades a partir de un circuito tan sencillo, pero útil como este.
Antes de empezar, lea nuestra sección de Recomendaciones. Contiene muchos “tips” que le serán muy útiles en la construcción de cualquiera de nuestros proyectos.
Hemos proporcionado el diagrama de conexión en protoboard para los estudiantes de electrónica que desean practicar y hacer sus propias variaciones.