Un vehículo eléctrico es un vehículo propulsado por uno o más motores eléctricos. La tracción puede ser proporcionada por ruedas o hélices impulsadas por motores rotativos, o en otros casos utilizar otro tipo de motores no rotativos, como los motores lineales, los motores inerciales, o aplicaciones del magnetismo como fuente de propulsión, como es el caso de los trenes de levitación magnética.
Historia
Thomas Edison y un coche eléctrico en 1913 (cortesía de National Museum of American History).
Un coche eléctrico y una antigüedad en la exposición de coches de Toronto en 1912.
Camille Jenatzy en un coche eléctrico La Jamais Contente, 1899.
1973: coche eléctrico urbano de la General Motors con un cargador de baterías en el primer simposio de desarrollo de sistemas de energía de baja contaminación.
El coche eléctrico fue uno de los primeros automóviles que se desarrollaron, hasta el punto que existieron eléctricos anteriores al motor de cuatro tiempos sobre el que Diesel (motor diésel) y Otto (gasolina), basaron el automóvil actual. Entre 1832 y 1839 (el año exacto es incierto), el hombre de negocios escocés Robert Anderson, inventó el primer vehículo eléctrico puro. El profesor Sibrandus Stratingh de Groninga, en los Países Bajos, diseñó y construyó con la ayuda de su asistente Christopher Becker vehículos eléctricos a escala reducida en 1835.
La mejora de la pila eléctrica, por parte de los franceses Gaston Planté en 1865 y Camille Faure en 1881, allanó el camino para los vehículos eléctricos. En la Exposición Mundial de 1867 en París, el inventor austríaco Franz Kravogl mostró un ciclo de dos ruedas con motor eléctrico. Francia y Gran Bretaña fueron las primeras naciones que apoyaron el desarrollo generalizado de vehículos eléctricos. En noviembre de 1881 el inventor francés Gustave Trouvé demostró un automóvil de tres ruedas en la Exposición Internacional de la Electricidad de París.
Justo antes de 1900, antes de la preeminencia de los motores de combustión interna, los automóviles eléctricos realizaron registros de velocidad y distancia notables, entre los que destacan la ruptura de la barrera de los 100 km/h, de Camille Jenatzy el 29 de abril de 1899, que alcanzó una velocidad máxima de 105,88 km/h.
Los automóviles eléctricos, producidos en los Estados Unidos por Anthony Electric, Baker, Detroit, Edison, Studebaker, y otros durante los principios del siglo XX tuvieron relativo éxito comercial. Debido a las limitaciones tecnológicas, la velocidad máxima de estos primeros vehículos eléctricos se limitaba a unos 32 km/h, por eso fueron vendidos como coche para la clase alta y con frecuencia se comercializaban como vehículos adecuados para las mujeres debido a conducción limpia, tranquila y de fácil manejo, especialmente al no requerir el arranque manual con manivela que si necesitaban los automóviles de gasolina de la época
En España los primeros intentos se remontan a la figura de Emilio de la Cuadra. Tras una visita a la Exposición Internacional de la Electricidad por motivos profesionales se interesó por dichos motores tras haber quedado sorprendido por las carreras celebradas en el circuito París-Burdeos-París en 1895. A través de la compañía “Cia. General de coches-automóviles Emilio de la Cuadra S. en C.” construirá diversos prototipos de vehículos eléctricos. Sin embargo, la falta de tecnología y recursos materiales y económicos provocó que desechara todos los proyectos y dedicara una docena de automóviles con motor de explosión, bajo el nombre de La Cuadra. La empresa cerró en 1901 debido a la falta de dinero y una huelga.
La introducción del arranque eléctrico del Cadillac en 1913 simplificó la tarea de arrancar el motor de combustión interna, que antes de esta mejora resultaba difícil y a veces peligroso. Esta innovación, junto con el sistema de producción en cadenas de montaje de forma masiva y relativamente barata implantado por Ford desde 1908 contribuyó a la caída del vehículo eléctrico. Además las mejoras se sucedieron a mayor velocidad en los vehículos de combustión interna que en los vehículos eléctricos.
A finales de 1930, la industria del automóvil eléctrico desapareció por completo, quedando relegada a algunas aplicaciones industriales muy concretas, como montacargas (introducidos en 1923 por Yale), toros elevadores de batería eléctrica, o más recientemente carros de golf eléctricos, con los primeros modelos de Lektra en 1954.
Ventajas y problemas (2013)
Desventajas y problemas
- Carga de las baterías y precio. Las baterías de más de 400 km de autonomía son muy costosas y se recargan en unas 9 horas sin mermar su capacidad. Para evitar este problema sería necesario cambiar las baterías descargadas por otras con carga de manera inmediata, de forma tal que al repostar en una estación de servicio el vehículo ingresara casi sin energía eléctrica y saliera de allí total o parcialmente cargado pocos minutos más tarde. Para ello las baterías deberían adaptarse perfectamente de manera de poder cambiarse rápidamente y que esto pudiese hacerse tanto de forma total como fraccionada.
- Algunos seguirán contaminando, ya que en ciertos casos la electricidad utilizada para recargar las baterías se produce mediante materias primas contaminantes como el carbón. En España, por ejemplo, la electricidad utilizada para las baterías supone unas emisiones de dióxido de carbono de 0,276 kg/KWeh generado.
- Menor autonomía que un coche convencional dado que necesita recargas frecuentes.
- El fuerte costo de compra inicial. En algunos casos el precio de un coche eléctrico triplica al de uno coche convencional. Ejemplo: Un Toyota Corolla, gama alta de Toyota, puede costar en torno a 17.000 euros con lo básico, un vehículo eléctrico como el THINK City alcanza en el mercado los 30.114 euros. Esto podría solucionarse si los fabricantes lo decidieran pues ya se ha comprobado con los vehículos híbridos que estos tienden a bajar de precio y ganar mercado rápidamente.
- La poca accesibilidad que existe en cuanto a las recargas. Problema que se irá solucionando poco a poco, al suministrar los puntos de recarga por parte del país. Pero para ello quizás sea imprescindible que las estaciones de servicio puedan cambiar las baterías descargadas (total o parcialmente) por otras con carga de manera inmediata. De esta forma la empresa se interesaría por el nuevo negocio y el usuario se vería compensado al pagar por un servicio que le ahorraría mucho tiempo de espera.
Ventajas
- No producen contaminación atmosférica.
- No producen contaminación sonora.
- Su uso permite prescindir de combustible y así ahorra petróleo, una materia prima limitada y se puede dedicar a otras materias también necesarias.
- Su mantenimiento y costo del "combustible" es mucho menor al de uno convencional. El Tesla Model S, por ejemplo, gasta 700$ de electricidad al año; el Porsche Panamera Turbo gasta 3400$ de combustible al año.
- Mayor eficiencia y par motor a partir de 0 revoluciones y la total ausencia de marchas, lo que se traduce en mejor respuesta en aceleración.
- En los deportivos, el uso de potencia distribuida en las ruedas y control del par motor de cada uno proporciona una mayor estabilidad en las curvas, y por tanto, en seguridad.
- Según Francisco Laverón, Miguel Ángel Muñoz y Gonzalo Sáenz de Miera, dos economistas y un ingeniero de la compañía Iberdrola, un coche consigue una eficacia de un 77% si la electricidad procede de fuentes renovables, mientras que 42 % si procede de energía eléctrica basada en gas natural. Además estos autores aseguran que un coche eléctrico podría recorrer casi el doble de kilómetros que uno de gasolina.
Energía
A diferencia de un vehículo con un motor de combustión interna (abreviadamente denominado vehículo de combustión) que está diseñado específicamente para funcionar quemando combustible, un vehículo eléctrico obtiene la tracción de los motores eléctricos, pero la energía puede ser suministrada de los modos siguientes:
- Alimentación externa del vehículo durante todo su recorrido, con un aporte constante de energía, como es común en el tren eléctrico y el trolebús.
- Energía proporcionada al vehículo en forma de un producto químico almacenado en el vehículo que, mediante una reacción química producida a bordo, produce la electricidad para los motores eléctricos. Ejemplo de esto es el coche híbrido no enchufable, o cualquier vehículo con pila de combustible.
- Energía generada a bordo usando energía nuclear, como son el submarino y el portaaviones nuclear.
- Energía generada a bordo usando energía solar generada con placas fotovoltaicas, que es un método no contaminante durante la producción eléctrica, mientras que los otros métodos descritos dependen de si la energía que consumen proviene de fuentes renovables para poder decir si son o no contaminantes.
Energía eléctrica suministrada al vehículo cuando está parado, que es almacenada a bordo con sistemas recargables, y que luego consumen durante su desplazamiento. Las principales formas de almacenamiento son:
- energía química almacenada en las baterías como en el llamado vehículo eléctrico de batería, especialmente en baterías de litio que parece ser la tecnología más desarrollada hoy. Es preciso destacar las nuevas inversiones que se están haciendo en el mayor yacimiento de litio (Salar de Uyuni-Bolivia) para la fabricación de estas baterías, aunque hay otros tipos de baterías recargables que se pueden utilizar.
- energía eléctrica almacenada en supercondensadores. Tecnología aún muy experimental.
- almacenamiento de energía cinética, con volante de inercia sin rozamiento.
Fuentes de energía
Es importante distinguir entre fuente de energía y vector energético. Las fuentes de energía son convertibles en formas de energía aprovechable y se encuentran de manera natural en el planeta, mientras que los vectores energéticos también son convertibles en energía aprovechable, en los que es menester invertir energía proveniente de una fuente energética para fabricarlos, para posteriormente recuperarla a voluntad.
Las fuentes de energía las hay de cuatro clases:
- Las fuentes gratuitas de energía (energía renovable) son aquéllas en las cuales la fuerza de conversión de energía proviene del entorno. Esta fuente incluye laenergía solar, eólica, hidráulica, geotérmica, mareomotriz, gradiente térmico y energía azul, generalmente no contaminan.
- Las fuentes de energía renovable contaminante son aquellas que liberan agentes tóxicos durante el proceso de obtención de energía, pero son agentes que habían sido absorbidos del entorno por las plantas y animales de los que se obtiene la energía, por lo que al final no se han añadido sustancias tóxicas al entorno. Ejemplos de esta fuente son el aceite vegetal, el metano de la composta, las heces de los animales, la leña o el carbón de madera.
- Las fuentes de energía atómica se basan en el principio de convertir materia en energía, proveniente de la transformación del núcleo atómico; mediante lafisión o la fusión atómicas. Pueden producirse residuos peligrosos, y enormes cantidades de energía, por lo que se requiere un mayor conocimiento científico para su manejo apropiado.
- Las fuentes de energía fósil de combustión, extraídas de yacimientos naturales finitos acumulados durante largo tiempo, es una forma de energía química, producto de millones de años de la vida terrestre, como son el petróleo, el gas natural y el carbón mineral, hasta ahora la energía se ha obtenido por pirólisis.
Como productos de la descomposición de los compuestos orgánicos al quemarlos, se obtiene dióxido de carbono en combustión completa; o monóxido de carbono si es incompleta, además de óxidos de nitrógeno y azufre, entre otros. Los cuales pueden alcanzar dosis letales en la atmósfera.
Estas fuentes de energía están ordenadas de menos a más contaminantes durante el proceso de obtención de energía, pero hay que puntualizar que absolutamente todas las fuentes producen alguna contaminación, algunas solo en la fabricación del mecanismo de obtención de la energía, y otras durante todo el proceso de obtención, de modo que un vehículo eléctrico será más o menos contaminante en función de cual de estas haya sido su fuente última de energía.
En el caso de vehículos que utilizan un vector energético, como es por ejemplo el hidrógeno, su grado de contaminación dependerá de cómo se haya obtenido ese hidrógeno, porque en estado natural sólo se encuentra combinado con otros elementos, y para aislarlo hay que invertir mucha energía. Los métodos actuales de producción son la hidrólisis del agua, mediante electricidad, el refinado del gas natural para aislar el hidrógeno, proceso que libera el CO2 del gas. Además, algunas compañías investigan otros métodos para obtener el hidrógeno, como la fotosíntesis de algas especiales que lo liberan del agua o a través de placas solares, como investiga el fabricante de automóviles japonés Honda, la única firma que ha obtenido la homologación para empezar a comercializar su vehículo eléctrico de pila de combustible de hidrógeno, el FCX Clarity, en Japón y Estados Unidos en 2008.
Las electrineras (o QuickDrop) son estaciones de servicio donde los coches u otros vehículos eléctricos pueden cambiar las baterías y el conductor no tiene ni siquiera que bajarse del vehículo, todo este proceso en menos de dos minutos. Pretenden completar las necesidades de autonomía de los coches eléctricos para distancias largas, principalmente interurbanas.
Contaminación y electricidad
En el año 2009, el sector del transporte fue responsabilizado del 39 por ciento del consumo de energía final en España, con una intensidad energética que supera en más de un 40 por ciento la media europea (EU-27). El sector del transporte sigue siendo enormemente dependiente de los productos petrolíferos (en un 98 por ciento). En el caso del transporte por carretera, éste representa más de la cuarta parte de las emisiones totales de CO2 en España –el 25,4 por ciento–, correspondiéndole del orden del 80 por ciento del consumo energético del sector transporte y el 90 por ciento de sus emisiones de CO2.
Desde la perspectiva medioambiental, no cabe duda de la eficacia del vehículo eléctrico, tanto para reducir la emisión de los gases de efecto invernadero como para la reducción de la contaminación local tanto atmosférica como sonora.
La contaminación de todo vehículo (eléctrico o no) debe contabilizarse sumando las emisiones directas, que son las emisiones que produce el propio motor del vehículo, y las emisiones indirectas, que son las emisiones producidas en sistemas externos al vehículo pero fundamentales para éste por proporcionarle la energía necesaria para funcionar. Aunque un vehículo eléctrico no produce emisiones contaminantes durante su funcionamiento, la generación de energía eléctrica necesaria para mover el vehículo eléctrico da lugar a emisiones contaminantes y al consumo de recursos no renovables en mayor o menor medida, dependiendo de cómo se haya generado esa energía eléctrica, como queda visto arriba. Un caso particular es el de los vehículos que utilizan electricidad renovable como fuente de energía primaria (este es el caso de los vehículos recargados por electricidad solar, también conocidos como solar-charged vehicle). Asimismo, durante la generación, el transporte y la transformación de energía eléctrica se pierde parte de la energía, por lo que la energía útil es inferior a la energía primaria, como se ha visto antes. Lo mismo sucede con el petróleo, que además de los gastos de transporte debidos a la diferencia geográfica de los lugares de producción y de consumo, es necesario transformar en refinería en los diferentes productos derivados del petróleo, incluyendo los carburantes.
En la siguiente tabla se muestra la cantidad de energía que produce cada tipo de central de la su relevancia, los kg de CO2 que se emiten por cada kWh producido en cada tipo de central y los kg de CO2 que es necesario emitir en la central para que un vehículo eléctrico recorra 100km, de acuerdo con que (como figura en tablas anteriores) para que un vehículo eléctrico recorra 100 km es necesario producir 15,35 kWh en la central eléctrica.
Balance eléctrico y emisiones de España 2010 (hasta el 20 de abril)
Centrales REE | Energía (MWh) | Energía (%) | kgCO2/kWh | kgCO2/100km |
Hidráulica | 17.360.755 | 19,93 | 0,000 | 0,000 |
Nuclear | 18.055.812 | 20,72 | 0,000 | 0,000 |
Carbón | 4.551.776 | 5,22 | 0,950 | 0,762 |
Fuel + Gas | 414.844 | 0,48 | 0,700 | 0,051 |
Ciclo Combinado | 17.158.538 | 19,69 | 0,370 | 1,118 |
Eólica | 15.316.833 | 17,58 | 0,000 | 0,000 |
Resto Régimen Especial | 14.271.036 | 16,38 | 0,270 | 0,679 |
TOTAL | 87.129.594 | 100,00 | 0,170 | 2,610 |
En el caso de España, el aprovechamiento de las fuentes de energías renovables, libres de emisiones de CO2), representan en 2011 el 20 por ciento de la generación eléctrica y se pretende llegar en 2020 a sólo el 40 por ciento.
Siendo las emisiones de la red eléctrica de España en 2010 (del 1 de enero al 20 de abril) de 0,17 kgCO2/kWh, un vehículo eléctrico tendrá unas emisiones indirectas (y totales) de 2,61 kgCO2/100km. Por otro lado, en Europa se estima que la media de emisiones de la red eléctrica es actualmente (2009) de unos 0,43 kgCO2/kWh lo que conlleva unas emisiones del vehículo eléctrico en Europa de unos 6,6 kgCO2/100km. No obstante, se calcula que desde ahora estas cifras desciendan gradualmente, de forma que en 2030 las emisiones medias de la red eléctrica en Europa sean de 0,13 kgCO2/kWh (frente a los 0,43 actuales), lo que, unido al mayor rendimiento de los motores en esa época (unos 11 kWhC/100km en 2030 ), conseguirá que en 2030 las emisiones medias europeas del vehículo eléctrico sean de unos 1,43 kgCO2/100km (frente a los 6,6 actuales).
Cabe apuntar que las emisiones de CO2/kWh de la LA red eléctrica española están teniendo un rápido y repentino descenso desde 2007, año en el que se emitieron 0,368 kgCO2/kWh, que comparado con los 0,170 kgCO2/kWh de 2010, supone una reducción del 53,8% de las emisiones por kWh en solo 3 años. En 2007 un vehículo eléctrico en España habría emitido 5,64 kgCO2/100km, frente a los 2,61 de 2010. Este rápido descenso en las emisiones de CO2/kWh en España se debe principalmente al desuso de las centrales de carbón (las más contaminantes), que de 1995 al 2007 han pasado de suponer el 41,6% a suponer solo el 25,6% de la producción total de energía eléctrica, para luego reducir drásticamente este porcentaje desde entonces hasta el 2010, quedando en su relevancia actualmente (2010) en el 5,2%. Las centrales nucleares mantienen una relevancia constante en torno al 20%, las eólicas mantienen un ascenso casi lineal y las de ciclo combinado modifican su producción según abunde o escasee la energía procedente de las centrales hidráulicas (cuya producción depende de factores climáticos no controlables).
Conviene comparar las cifras anteriores de contaminación del vehículo eléctrico con las del vehículo de motor de gasolina para hacernos una idea de la relación entre unos y otros en términos de emisiones. Tal y como se ha calculado con el vehículo eléctrico (solo que éste no tiene emisiones directas, sólo indirectas), las emisiones que se exponen a continuación son las emisiones totales del vehículo de motor de combustión, es decir, las directas (las que proporciona el fabricante) más las indirectas (que son aproximadamente una adición de un 15%, debido a emisiones en el refinamiento del petróleo, transporte, etc. ). Así, las emisiones totales de un utilitario pequeño de motor diésel (Renault Clio dci) son de 13,8 kgCO2/100km (12 de emisiones directas), las de las nuevas matriculaciones en España en 2009 son de unos 16,0 kgCO2/100km (13,9 de emisiones directas) y las emisiones del parque automovilístico medio actual (2009) de Europa son de unos 18,4 kgCO2/100km (16,0 de emisiones directas).
Energía limpia, electricidad renovable
Véase también: Electricidad renovable
En todo caso, los particulares y empresas están instalando placas solares y microturbinas eólicas y contratando con comercializadores de electricidad renovable para recargar con este tipo de energía sus vehículos eléctricos (en especial los todo-eléctricos) por lo que la contaminación que producen es nula.
Consumo
Los vehículos eléctricos destacan por su alto rendimiento en la transformación de la energía eléctrica de la batería en la energía mecánica con la que se moverá el vehículo (60-85%), frente al rendimiento de la transformación de la energía del depósito de gasolina en la energía mecánica que mueve un vehículo de gasolina (15-20%). El presente y futuro de las baterías del vehículo eléctrico parece pasar por la batería de ion de litio, que cada vez se fabrica con mayor densidad de carga y longevidad permitiendo mover motores más potentes, aunque por ahora la autonomía media de un utilitario eléctrico se encuentra en torno a los 150 km. No obstante, deportivos eléctricos más caros han conseguido aumentar esa autonomía hasta los 483 km, como el modelo de 70 kWh del Tesla Roadster. , Con el objetivo de saber el consumo que supone el vehículo eléctrico, existen distintas herramientas, como el programa CEVNE o el usar tablas de consumo cada 100 km de los principales vehículos eléctricos salidos y por salir en un corto plazo de tiempo y el consumo de kWh de la batería por cada 100 km de cada uno de ellos y de la media.
kWhB/100km que consumen los principales vehículos eléctricos
Modelo | (kWh) | Autonomía (km) | kWhBatería/100km |
Mega e-City | 9 | 100 | 9 |
Reva L-ion | 11 | 120 | 9,17 |
Think City | 25 | 200 | 12,50 |
Mitsubishi i-Miev | 16 | 130 | 12,31 |
Citröen C-Zero | 16 | 130 | 12,31 |
Renault Fluence ZE | 24 | 175 | 13,71 |
Nissan Leaf | 24 | 160 | 15,00 |
Tesla Roadster 42 | 42 | 257 | 16,34 |
Tesla Roadster 70 | 70 | 483 | 14,49 |
MEDIA | 26,11 | 193 | 12,76 |
Entendemos con esto (sin tomar en cuenta el Mega e-City que fue añadido a la tabla después), que el consumo medio cada 100 km de un vehículo eléctrico actualmente es de 13,78 kWh. Sin embargo, sólo es el consumo de los kWh que contiene la batería. Como el proceso de carga de la batería o el transporte y distribución de la electricidad tienen pérdidas causadas por no tener un rendimiento perfecto, la cantidad de kWh que necesitan extraerse de una toma de corriente o que se fabrican en la central eléctrica son algo superiores. Para obtenerlos debemos atender a la siguiente tabla de rendimiento del paso de la electricidad por cada elemento del sistema que va desde la enegría del medio hasta la energía mecánica que mueve el vehículo.
Rendimiento/Eficiencia del Vehículo Eléctrico en España
Sistema | Notación | Rend. (%) |
Central (Ponderación) | ηg | 48,47 |
Transporte y Distrib. | ηt | 93,70 |
Convertidor Eléctrico | ηc | 97,00 |
Batería | ηb | 98,80 |
Rend. Enchufe-Batería | ηc·ηb | 95,84 |
Rend. Central-Batería | ηt·ηc·ηb | 89,80 |
Sist. Mec. Vehículo | ηmec | 80,00 |
Motor y Sist. Eléc. | ηm | 88,30 |
Rend. Batería-EMec | ηmec·ηm | 70,64 |
Rend. Central-EMec | ηt·ηc·ηb·ηmec·ηm | 63,43 |
TOTAL (Medio-EMec) | η = ηg·ηt·ηc·ηb·ηmec·ηm | 30,75 |
Cabe apuntar que ηg hace referencia al rendimiento medio de la Red Eléctrica Española, que ha sido corregida siguiendo datos extraídos la propia web, ya que recientemente se ha situado sobre la media europea, que está entorno al 38%.Con esto podemos calcular la energía real que debe pasar por cada elemento del sistema para que lleguen esos 13,78 kWh a la batería de un coche eléctrico cada 100km.
Consumo Coche eléctrico por cada 100km en cada parte del Sistema
kWhEMec/100km | kWhB/100km | kWhE/100km | kWhC/100km | kWhM/100km |
Son los kWh que cada 100km se transforman enenergía mecánicaaprovechable, a partir de los 13,78 kWh de la batería | Son los kWh que cada 100km se consumen de la batería | Son los kWh que cada 100km es necesario extraer del enchufe de carga para proporcionar los 13,78 kWh a la batería. Son los kWh que pagamos cada 100km | Son los kWh que cada 100km se han producido en la central para proporcionar los 13,78 kWh a la batería. Son los kWh empleados para los cálculos de contaminación de kgCO2/kWh de las centrales | Son los kWh que cada 100km es necesario extraer del medio para proporcionar los 13,78 kWh a la batería |
9,73 | 13,78 | 14,38 | 15,35 | 31,66 |
Así, de esos 13,78 kWh consumidos de la batería de un coche eléctrico cada 100 km: se transforman en energía mecánica para desplazar el vehículo 9,73 kWh, será necesario extraer de una toma de corriente 14,38 kWh, será necesario producir en una central eléctrica 15,35 kWh y será necesario extraer del medio 31,66 kWh. Por los motivos antes apuntados (diferente ηg respecto de Europa) el dato de los 31,66 kWh es solo válido para España, mientras que como media Europea sería algo superior, en torno a 40 kWh.
Modelo de pre-producción Hiriko Fold en Vitoria.
Debido a que se necesita extraerer de la toma de corriente 14,38 kWh para recorrer 100km en un vehículo eléctrico, éste será el número de kWh que aparecerá en la factura por cada 100km recorridos. Y, estando en España el costo por kWh para pequeños consumidores en aproximadamente 0,115 €. El costo que supone proporcionar la energía necesaria a un vehículo eléctrico en España es de unos 1,65€/100km.
Este dato es uno de los puntos fuertes de los vehículos eléctricos a baterías. Comparándolo con el consumo de un vehículo equipado con un motor de combustión interna, es verdaderamente ventajoso. Por ejemplo: un pequeño utilitario con un motor diésel (Renault Clío dci), combinando recorrido urbano y extra-urbano consume 4,7 L/100 km. Lo cual, con el coste actual del gasóleo (unos 1,35 €/L ), supone 6,35 €/100 km.
Incluso es un gasto por kilómetro muy pequeño comparándolo con un vehículo híbrido. El Toyota Prius tiene un consumo medio homologado en circuito combinado de 3,9 L/100km, sólo un poco inferior al del utilitario convencional. En euros supondría un coste de 5,27 €/100km.
Integración en la red eléctrica
Toyota i-Road en Grenoble
Véase también: Electrolinera
La recarga masiva de vehículos eléctricos generará una demanda importante sobre el sistema eléctrico. Para que el balance ambiental de la introducción del vehículo eléctrico sea beneficioso, se requiere un cierto grado de flexibilidad en los modos de recarga, así como una gestión inteligente de las cargas en función de la disponibilidad de generación renovable. Un paso más allá sería la utilización de las baterías de los vehículos eléctricos como medio de almacenamiento remoto que pueda inyectar energía a la red cuando fuese necesario y el grado de carga y plan de utilización del vehículo lo permitieran.
Los híbridos
Artículo principal: Vehículo híbrido eléctrico
Se han llamado “híbridos” a los automóviles que utilizan un motor eléctrico, y un motor de combustión interna para realizar su trabajo. A diferencia de los automóviles solo eléctricos, hay vehículos híbridos que no es necesario conectar a una toma de corriente para recargar las baterías, el generador y el sistema de "frenos regenerativos" se encargan de mantener la carga de las mismas.
Al utilizar el motor térmico para recargar las baterías, se necesitan menor número de estas por lo que el peso total del vehículo es menor ya que el motor térmico suele ser pequeño. Tradicionalmente, los motores que han propulsado a los automóviles convencionales han sido sobredimensionados con respecto a lo estrictamente necesario para un uso habitual. La nota dominante ha sido, y es aún, equipar con motores capaces de dar una potencia bastante grande, pero que sólo es requerida durante un mínimo tiempo en la vida útil de un vehículo. Los híbridos se equipan con motores de combustión interna, diseñados para funcionar con su máxima eficiencia. Si se genera más energía de la necesaria, el motor eléctrico se usa como generador y carga la baterías del sistema. En otras situaciones, funciona sólo el motor eléctrico, alimentándose de la energía guardada en la batería. En algunos híbridos es posible recuperar la energía cinética al frenar, que suele disiparse en forma de calor en los frenos, convirtiéndola en energía eléctrica. Este tipo de frenos se suele llamar "regenerativo". Ejemplo de vehículo con motor híbrido (BMW X5 'Efficient Dynamics')
Promoción
Diversas entidades públicas conceden subvenciones, exenciones de impuestos y rebajas fiscales a los vehículos eléctricos.
Reconociendo la necesidad de reinventar el automóvil, el presidente de Estados Unidos, Bill Clinton, anunció en 1993 un proyecto conjunto del gobierno y la industria automovilística estadounidenses para diseñar el auto del futuro. Dijo: “Trataremos de poner en marcha el programa tecnológico más ambicioso que jamás haya tenido nuestra nación”. Queda por ver si se logra “crear el vehículo ecológico de eficiencia perfecta para el siglo XXI”. Aunque a un costo enorme, se esperaba fabricar un prototipo en el lapso de una década. Algunos fabricantes están trabajando en modelos que combinan el uso de gasolina y electricidad. EnAlemania en los años 90 ya existían costosos automóviles deportivos eléctricos capaces de alcanzar la velocidad de 100 kilómetros por hora en nueve segundos, y se espera llegar a 180 kilómetros por hora; sin embargo, cuando han recorrido 200 kilómetros hay que recargar las baterías al menos durante tres horas. Se espera que la investigación progrese mucho más en este campo.
OCDE
La práctica totalidad de los países desarrollados y de la OCDE están implementando políticas de apoyo al vehículo eléctrico, con el objetivo de contribuir a la mejora de la eficiencia energética y la reducción de las emisiones de CO2 y de contaminantes en las ciudades, al tiempo que se reduce la dependencia del petróleo y se favorece la utilización de fuentes de energía renovables.
Unión Europea
En el Papel Blanco sobre Transporte 2050, la Unión Europea establece que:
- No habrá coches de combustión en el centro de las ciudades para 2050, con el objetivo intermedio de que en 2030 la mitad de los vehículos sean eléctricos
- Un 40% de corte de emisiones de barcos y un uso del 40% de combustibles de bajo carbono en aviación
- Y un cambio de un 50% de viajes de media distancia, tanto de pasajeros como de mercancías, desde la carretera al tren y otros modos de transporte
Se prevé la creación de un Área Única de Transporte Europeo.
España
Los vehículos todo-eléctricos están exentos del impuesto de matriculación. En la Región de Murcia se conceden ayudas dentro de la Estrategia de Ahorro y Eficiencia Energética en España (E4), Plan de movilidad sostenible, a las corporaciones locales y otras administraciones públicas, y las empresas, pero no a los particulares, como sucede en otros lugares.
Puesto para recargar las baterías de un coche eléctrico, en Andorra.
El Ministerio de Ciencia e Innovación quiere asumir el objetivo fijado por el Gobierno de España de transformar el modelo productivo de la nación en una economía sostenible, basada en el conocimiento, en línea con la política de innovación prevista en el Acuerdo Social y Económico para el crecimiento, el empleo y la garantía de las pensiones (ASE). Por ello, el MICINN y Servicio Público de Empleo Estatal (SPEE) han firmado un convenio de colaboración, con el fin de facilitar e impulsar el cumplimiento de los fines y objetivos que tienen ambas administraciones, en materia de empleo y de formación profesional para el empleo y en materia de investigación, desarrollo experimental e innovación y en particular, para desarrollar las actividades de formación del Programa INNCORPORA, y generar empleo de calidad.
El Plan Integral de Automoción, compuesto por el Plan de Competitividad, dotado con 800 millones de euros, el Plan VIVE II y la apuesta por el vehículo híbrido eléctrico, con el objetivo de que en 2014 circulen por las carretas españolas un millón de coches eléctricos. Para ello, se proponía poner en marcha un programa piloto denominado Proyecto Movele, consistente en la introducción en 2009 y 2010, y dentro de entornos urbanos, de 2.000 vehículos eléctricos que sustituyan a coches de gasolina y gasóleo.
Dentro del Proyecto Movele, en España se han instalado 500 puntos de recarga hasta 2011 y en Barcelona se instalaron durante el año 2009 dieciocho puntos, que se ubicaron en diversos aparcamientos municipales. Asimismo, en la ciudad condal se celebra la Fórmula-e.
Tras la aprobación por parte del Consejo de Ministros del Plan PIVE, el cual permite acumular dos ayudas para la adquisición de vehículos eléctricos. Pudiendo tener subvenciones hasta de 8000 euros. En la acumulación del Plan Integral de Impulso del Vehículo Eléctrico en España 2010-2014 (Plan MOVELE) y el Plan PIVE.
Por otro lado, la Ley 19/2009, de 23 de noviembre, de medidas de la eficiencia energética de los edificios, establece que para instalar en el estacionamiento de un edificio algún punto de recarga para vehículos eléctricos de uso privado, siempre que éste se ubicara en un cajón individual, sólo se requerirá la comunicación previa a la comunidad de que se procederá a su instalación. El costo de dicha instalación será asumido íntegramente por el interesado directo en la misma.
Dentro del Plan Avanza, Subprograma Avanza Competitividad (I+D+I), para la realización de proyectos y actuaciones de investigación, desarrollo e innovación, se recoge la finalidad de contribuir a la consecución, dentro de las TIC verdes, de aplicaciones y sistemas para el vehículo eléctrico.
El Real Decreto-ley 6/2010, de 9 de abril, de medidas para el impulso de la recuperación económica y el empleo contempla en el capítulo V, en el ámbito del sector energético, medidas que tienen como objetivo crear las condiciones para impulsar nuevas actividades, muy relevantes para la modernización del sector, como son las empresas de servicios energéticos y el vehículo eléctrico, que por su papel dinamizador de la demanda interna y, en definitiva, de la recuperación económica. A través del artículo 23, se incluye en el marco normativo del sector eléctrico un nuevo agente del sector, los gestores de cargas del sistema, que prestarán servicios de recarga de electricidad, necesarios para un rápido desarrollo del vehículo eléctrico como elemento que una de nuevo, las características de nuevo sector en crecimiento y de instrumento de ahorro y eficiencia energética y medioambiental. Por otra parte, en el artículo 24, y con el objetivo de promover el ahorro y la eficiencia energética, se establece que la Administración podrá adoptar programas específicos de ahorro y eficiencia energética en relación con el desarrollo del vehículo eléctrico.
El Gobierno ha presentado la Estrategia Integral para el Impulso del Vehículo Eléctrico, con el horizonte 2014, y el Plan de Acción 2010-2012. En dicho plan de acción y el Plan integral del impulso del vehículo eléctrico, se ha incorporado la novedad de los autobuses eléctricos (pero no se han incluido los barcos no deportivos o la maquinaria agrícola, como los tractores).
En Canarias, se ha consolidado como la pionera el desarrollo de los vehículos eléctricos, siendo la promotora de instalaciones de Puntos de Recarga, y fomento del uso de la Movilidad Sostenible.
Enseñanzas
Se indica en el Real Decreto 1796/2008, de 3 de noviembre, por el que se establece el título de Técnico Superior en Automoción y se fijan sus enseñanzas mínimas que el sector productivo en el área de electromecánica señala una evolución en la actividad hacia la aplicación de nuevas tecnologías en detección, diagnosis y reparación de averías, la aparición de nuevos motores tanto eléctricos como los denominados híbridos, donde los dispositivos de cambio de velocidad serán sustituidos por variadores de velocidad y la utilización de nuevos combustibles no derivados del petróleo.